Want Not, Waste Not: Preliminary findings

Author: Anna Schytte Sigaard

Summary

This project note presents preliminary findings from a PhD project looking into textile waste from Norwegian households. 28 households collected textiles that they would have otherwise discarded for a period of six months. The textiles were collected by the PhD candidate during visits to the households where qualitative interviews were carried out. Then, all textiles were registered along with information from the interviews. The findings indicate that most of the discarded textiles are clothes and shoes. However, when broken down into textile categories, household textiles represent the largest group of discarded textiles. In addition, findings show that about one third of the collected textiles were in a very good condition, either like new or with only minor changes. The fiber content of the textiles corresponded with the preliminary findings from work package 2 in Wasted Textiles, as there was an equal distribution between 100% synthetic textiles, 100% non-synthetic textiles and textiles containing a mix of these. It was also found that the largest group of users were adult women, especially when looking at number of textiles discarded. If weight was applied instead, the difference between the genders evened out more. As these findings are preliminary, it is too early to provide any hard conclusions. Instead, the project note is meant to grant insights into the kind of data that will eventually be available and shared with the project group.

Click here to read the full project note.

A functioning ‘functional unit’?

Ingun Grimstad Klepp and Tone Skårdal Tobiasson

What is the ‘functional unit’ of a winter coat, or a pair of boots? The ‘functional unit’ is a central concept for lifecyle assessment (LCA) based tools. In the ongoing work on the European Union’s (EU) PEFCR (Product Environmental Footprint Category Rules), this is based on the number of days of ‘usability’.

Let’s explore what this means. A ‘functional unit’ is perhaps most easily explained in terms of paint, in terms of how long a certain paint will keep the walls protected and good looking, but how does that translate to apparel?

The EU has decided that the functional unit for a winter coat – or a pair of boots – is 100 days of use. This is the expected usability (functional unit) you can expect to gain from a product before it needs replacing or repairing. So far, so good.

Click here to read the full article (ecotextile.com)

Click here to read an opinion piece on the same theme (sciencenorway.no)

How to make sure Extended Producer Responsibility becomes a silver bullet

This is a letter sent to commissioners and members of the European Commission in October 2022, from 4 participants in the Wasted Textiles project that explains their suggestions for a way of developing an EPR scheme that addresses volumes. They suggest an Eco-modulation based on volumes in the waste and therefore include the growing online trade.

How to make sure Extended Producer Responsibility becomes a silver bullet

We would firstly like to recognize the immense effort made by the EU Commission in launching the EU Strategy for Sustainable and Circular Textiles in the spring of 2022 and welcome the long-awaited focus on this sector. We would also like to express our appreciation of the strategy’s systemic approach to tackling the various challenges in the textile sector. We especially welcome that the strategy addresses fast fashion, the problem of synthetics and the need for EPR.

We are an applied research consortium under the umbrella of the project Wasted Textiles, which represents strong expertise on textiles, i.e., consumption and wardrobe studies (use, reuse, laundry, repair, disposal), end-of-life practices and waste analysis, fibres and measurement tools, greenwashing, marketing claims and consumer communication and, business models. We wish to offer our interdisciplinary expertise and in-depth knowledge of consumer research, waste and recycling management and policies from 30 years of research and recycling industry development. Wasted Textiles is led by Consumption Research Norway (SIFO), a non-profit, transdisciplinary research institute at the Oslo Metropolitan University.  SIFO has a history going back to the 1930s and the birth of home economics and has worked with clothing consumption from the start. Today the institute has extensive research on clothing, especially the use phase.

With this letter, we would like to express our support for the EU Commission’s work within textiles and at the same time highlight key areas of concern that need to be addressed for a much-needed systemic change within the industry. Specifically, this letter concerns the development of harmonised      EU Extended producer responsibility (EPR) rules for textiles with eco-modulation fees as part of the forthcoming revision of the Waste Framework Directive in 2023.

Norway was one of the first countries in Europe to implement Extended Producer Responsibility for packaging waste and electric electronic equipment (EE goods) and batteries during the early 1990s. The law from 2017 replaced the voluntary industry agreements from 1994. The National Waste Association of Norway (Avfall Norge, part of the Wasted Textiles consortium) has a history dating back to 1986. Norway also got its first Pollution Act in 1981.

We believe that harmonised EU EPR rules for textiles can be an important instrument to bring the needed systemic changes in the textile sector. In line with a recent report by Eunomia “Driving a Circular Economy for Textiles through EPR”, we believe the aim of the EPR scheme must be the reduction of environmental impacts from the textile sector. This is in line with the original definition of EPR from the Swedish researcher Thomas Lindhqvist from 1992:

“Extended producer responsibility is an environmental protection strategy to achieve an environmental goal of reduced total environmental impact from a product, by making the manufacturer of the product responsible for the entire life cycle of the product and especially for the return, recycling and final disposal of the product. The extended producer responsibility is implemented through administrative, financial and informative instruments. The composition of these instruments determines the exact form of the extended producer responsibility.”

Our point of departure is that the biggest challenge in the textile sector is overproduction. The amount of clothes produced and sold has increased drastically in the past 20 years. This means that each individual garment is used less and less. In order to reduce environmental burdens, measures are therefore needed that not only address the product’s design but above all the quantity of products. It is those who produce the clothes that are used the least – or never even used at all – who emit the most. At the same time, it is the clothes that are worn the longest that burden the environment and waste systems the least. In other words, we want to take the waste hierarchy seriously by showing how EPR can prevent waste and not just stimulate increased reuse and recycling.

As a starting point, and in line with the beforementioned Eunomia report, we believe the aim of the scheme must be the reduction of environmental impacts. This is achieved most quickly and efficiently by reducing the EU’s production and import of new apparel and other textile products. But, for EPR to move towards a circular economy for textiles and not simply be an exercise in transferring costs, as the report formulates it, EPR must be designed smartly. One of the challenges with EPR, that the report points to, is precisely taking the waste hierarchy seriously, e.g., by not favouring recycling over reuse, ensuring that the environmental fee is high enough to have an effect on production volumes, and that the scheme includes the growing online shopping with direct imports.

The biggest challenge is overproduction: EPR must be designed accordingly

We are concerned that the measures proposed in the EU’s textile strategy (PEF, the Eco-design Directive and EPR) focus primarily on the product and its design together with end-of-life strategies (recycling), and thus not on the possible systemic changes that are pressing. In order to reduce the environmental impact of large volumes of textiles (fast fashion), measures are therefore needed that not only address the product’s design and strategies for prolonged- and end-of-life textiles, but also the number of products produced. If the EU is to achieve its goal of making fast fashion out of fashion, the means must be directed at factors that make fast fashion unprofitable. In extreme cases, we are talking about disposable products, in addition to the destruction of products that have never been used at all. It is not the design of each individual product that distinguishes fast fashion, which means that eco-design criteria will therefore not have the desired effect standing alone. A weakness of most of the EPR systems that have been implemented so far is that they do not take the issue of quantity seriously.

If the EU is to achieve its goal of making fast fashion out of fashion, the means must be directed at what makes fast fashion profitable: large volumes and rapid changes. The commission has been discussing a ban on greenwashing and planned obsolescence. In fact, fast fashion is planned obsolescence by definition. The clothes are not meant to last. Not because of bad quality or bad design, but because there is a new trend coming ever more often and faster.

The work on the development of PEF (Product Environmental Footprint) for clothing has also shown that it is extremely difficult to develop eco-design criteria for clothing, as the criteria for what constitutes good clothing are so varied and person-specific. Focusing on the product’s design does not capture the most important: whether there is an actual use for the product.

We believe that EPR can be designed so that quantity and speed are taken into account. This must be done by studying the use and disposal phases, and possibly also the quantity and speed of production. Those clothes that are used little and cost a lot to reuse/recycle will be the most expensive to put on the market.

If this is done and combined with sufficiently high fees, we ensure that one of the instruments in the textile strategy actually works, i.e., brings systemic change and is thus a true silver bullet.    

The importance of the use phase

By the use phase we mean the time the product is in use. The longer this is, the less waste is created. Currently, textile use is an area with limited knowledge and data, however, in order for the EPR rules to have an impact on fast fashion and the related overconsumption, it is highly important, that we make sure that an EPR scheme considers use-related aspects. The use phase for clothing can be measured in the number of times something is used, or how long it is used. The latter is far easier than the former to measure. Instead of trying to guess which products will be used for a long time and modulating the fee on design parameters, it is possible to measure how long products from different (larger) retailers remain in use. Using “picking analysis” (a type of waste audit, an established method for analysing waste streams), sample analyses of textile waste and textiles donated for reuse, an average usage phase can be estimated.

The system will be far more accurate when the year of production is included in the mandatory labelling of clothing, a long overdue requirement. The time-lapse from when the product is put on the market until it goes out of use will give the manufacturers a score which is then multiplied by the volumes of the various brands or collections that suppliers put on the market. The modulation of the fee should take into account the producers’/brands’ average usage phase.

The brands that are not found in the waste streams will be exempt from paying a fee. This may be because the products are perceived as so valuable by consumers that they remain in their possession. Differentiations based on clothing categories should, however, be included as some garment types are expected to have longer use phases than others, e.g, a coat versus a T-shirt.

Reuse and disposal phase

When more textiles are to be collected for reuse and recycling, and more is to be done in Europe rather than in the Global South, the costs of these processes will increase. If more is to be utilised at a higher level in the waste hierarchy, it will also cost more. Much of what is not reused today could be reused if the clothes were renewed, i.e. repaired, washed or stains were removed, which in turn captures the reuse value of these products but at the same time carries a cost. These activities and related business models are currently underfinanced, and they lack profitability due to the associated high costs of manual labour and the overload of big volumes of low-priced and low-quality fast fashion items with no or limited reuse value.  At the same time, certain textiles have a high value and can ensure a profit for collectors (e.g., resell business models where ca 5-10% of high-quality garments are sold on online platforms). It is important that all reusable textiles are given the opportunity to have longer lifespans, so if the EU is to aim to increase the reuse of textiles, preparation for reuse and repair activities must be financially supported by the EPR.

The same will apply to various forms of recycling: different products have different recycling costs. Some can be easily recycled; other textiles will not be recyclable at all or only if cost-intensive measures are first taken. As for the use phase, we, therefore, propose an average per brand based on how much the waste management costs. Those with a high reuse value and low cost of recycling will receive a lower fee, possibly an exemption in the end.

The modulation of the fee will thus consist of a combination of how long clothing from the brand is used on average and how costly better waste treatment is. Both evaluations can be made based on picking analyses that are repeated at regular intervals so that new brands, or improvements by already existing brands, can be captured. These analyses will also ensure increased knowledge about textile consumption and textile waste and will be important for statistics, research and regulation in the textile area. We have called this way of modulating the fee in an EPR system Targeted Producer Responsibility (TPR), which is described in ScienceNorway.no.

Production and marketing

The way EPR is usually conceived, the total tonnage of products placed on the market by an individual producer forms the starting point for the fee. But the quantities can also be used in the modulation of the environmental fee. It is possible to let those manufacturers who have many collections, a short timespan in-store for each individual product and also sell large volumes, incur a higher fee, which is then multiplied by the weight of what they place on the market. Proposals for such a fee modulation have been made by several Norwegian environmental organisations and can easily be combined with a TPR. It is also possible to use other parameters in the modulation, such as the proportion sold with reduced prices (the percentage that goes on sale), the proportion of returned goods, unsold goods, etc.

To summarise our proposal:

  • The EU has a golden opportunity to ensure a systemic change for the better of its citizens and the environment.
  • If we are to achieve the goal of reducing environmental impacts from textile production the quantities must be reduced. Less clothing is the prerequisite for each garment to be used longer, in line with the principles of the waste hierarchy and circular economy.
  • The measures proposed in the EU’s textile strategy (PEF; the Eco-design Directive and EPR) all focus on the product and its design, and thus not on the systemic changes. EPR on textiles can, if desired, be designed so that it changes the business models of fast fashion by making it less profitable, and those clothes that are used little and cost a lot to be reused and recycled also become unprofitable to put on the market.

The above concerns and suggestions were a selection of many, and we are aware that a successful EPR agenda in the EU will include many more elements and key areas for coherent consideration.

Thank you for your time and attention.

Sincerely,

Ingun Grimstad Klepp

Professor of Clothing and Sustainability, SIFO, OsloMet

Jens Måge

Technical Advisor, National Waste Association of Norway

Kerli Kant Hvass

Assistant Professor in Circular Economy, Aalborg University

Tone Skårdal Tobiasson

Author, journalist, founder NICE Fashion and Board member Union of Concerned Researchers in Fashion 

Review of clothing disposal reasons

Authors: Kirsi Laitala and Ingun Grimstad Klepp, SIFO

Abstract

Garment lifetimes and longer serviceable life play important roles in discussions about the sustainability of clothing consumption.

A compilation of the research on clothing disposal motivations shows that there are three main reasons for disposal:

  1. Intrinsic quality (37%): Wear and tear-related issues such as shrinkage, tears and holes, fading of colour, broken zippers and loss of technical functions such as waterproofness.
  2. Fit (28%): Garments that do not fit either because the user has changed size, or the garment did not fit well to start with (for example due to unsuitable grading, insufficient wear ease or wrong size).
  3. Perceived value (35%): reasons where the consumer no longer wants the garment because it is outdated or out of fashion, or no longer is needed or wanted, or is not valued, for example when there is a lack of space in the wardrobe.

This shows that almost two-thirds of garments are discarded for reasons other than physical durability. Poor fit/design together with lack of perceived value by the owner are responsible for the majority of clothing disposals.

Physical strength is one of the several factors that are important if the lifetime of clothing is to be increased. However, it does not help to make clothes stronger if they are not going to be used longer anyway; this will just contribute to increased environmental impacts from the production and disposal phases. We do not need disposable products” that last for centuries. To work with reducing the environmental impacts of clothing consumption, it is important to optimize the match between strength, value and fit. This has the potential to reduce overproduction. Optimizing clothing lifespans will ensure the best possible utilization of the materials in line with the intentions of the circular economy.

Introduction

Garment lifetimes and longer serviceable life play important roles in discussions about the sustainability of clothing consumption.

Here we present the empirical findings summarized from the research that exists around clothing disposal. The review was originally conducted for the work with the development of durability criteria for Product Environmental Footprint Category Rules (PEFCR) for apparel and footwear. We believe this can be useful information for companies working to improve their products, and debate about clothing sustainability including the understanding of PEF.

We would like to thank Roy Kettlewell and Angus Ireland for their cooperation.

Method

The review includes empirical quantitative studies on clothing disposal reasons. The studies use varying methods, where online surveys are the most commonly used, but also two physical wardrobe studies are included. The way disposal reasons are studied varies as well. Many surveys ask for general, most common disposal reasons, while wardrobe studies and a few of the surveys focus on specific garments that the informants have disposed of. One of the online wardrobe surveys also asks for anticipated disposal reasons for specific garments instead of past behavior. All of the studies have been conducted between 1987 and 2020. The review excluded any studies that did not focus on disposal reasons or did not report results in a quantitative manner. In addition, it excludes a few lower-quality studies with methodological issues. In total 17 studies that fulfil the inclusion criteria were found.

Results

The review shows that clothing is discarded for many reasons. Table 1 summarizes the results and gives some information about the study sample such as where it was conducted and the number of respondents, as well as the main method that was used. Although there are differences between the surveys, they show a common feature. The results on disposal reasons could be placed in three main categories that were found in all reviewed studies: 1) intrinsic quality, 2) fit, and 3) perceived value, and an additional category for 4) other or unknown reasons. The categories include the following disposal reasons:

  1. Intrinsic quality: Wear and tear-related issues such as shrinkage, tears and holes, fading of colour, broken zippers and loss of technical functions such as waterproofness.
  2. Fit: Garments that do not fit either because the user has changed size, or the garment did not fit well to start with (for example due to unsuitable grading, insufficient wear ease or wrong size).
  3. Perceived value: reasons where the consumer no longer wants the garment because it is outdated or out of fashion, or no longer is needed or wanted, or is not valued, for example when there is a lack of space in the wardrobe.

StudyResearch design and sample sizeIntrinsic qualityFitPerceived valueOther / unknown
AC Nielsen (Laitala & Klepp, 2020)Survey in five countries, 1111 adults aged 18-64, anticipated disposal reason of 40,356 garments4413359
WRAP (2017)Survey in the UK, 2058 adults, 16,895 garments, disposal reasons per clothing category past year1842337
Laitala, Boks, and Klepp (2015)Wardrobe study in Norway, 25 adults (9 men and 16 women), 396 discarded garments50162410
Klepp (2001)Wardrobe study in Norway, 24 women aged 34- 46. 329 discarded garments31153321
Collett, Cluver, and Chen (2013)Interviews in the USA, 13 female students (aged 18 – 28). Each participant brought five fast fashion items that they no longer wear413821
Chun (1987)Survey in the USA, 89 female students (aged 18 – 30). Most recent garment disposal reason.629569
Lang, Armstrong, and Brannon (2013)Survey in the USA, 555 adults. General garment disposal reasons.303139
Koch and Domina (1997)Survey in the USA, 277 students (82% female). General disposal reasons and methods.293833
Koch and Domina (1999) and Domina and Koch (1999)Survey in the USA, 396 adults (88% female). General disposal reasons and methods.213742
Zhang et al. (2020)Survey in China, 507 adults (53% female). General disposal reasons.43192216
Ungerth and Carlsson (2011)Survey in Sweden, 1014 adults (age 16 – 74). The most common disposal reason.608219
YouGov (Stevanin, 2019)Survey in Italy, 992 adults, general disposal reasons.31242025
YouGov (2017a, 2017b, 2017c, 2017d, 2017e)Surveys in Australia, Philippine, Malaysia, Hong Kong & Singapore, in total 12,434 adults. General disposal reasons.3925297
MeanApprox. 20,000 adults34.125.831.412.6
Table 1. Summary of clothing disposal reasons in 17 consumer studies.

When the category of other/unknown reasons is excluded, the division between the three main disposal reason categories is quite similar, with intrinsic quality constituting about 37% of disposal reasons, followed by lack of perceived value (35%) and poor fit (28%) (Figure 1).

Figure 1: Clothing disposal reasons

Conclusion

A compilation of the research on clothing disposal motivations shows that there are three main reasons for disposal. Intrinsic quality, that is wear and tear and other physical changes of garments is the dominating disposal reason (37%), followed by lack of perceived value (35%) and poor fit (28%). This shows that almost two-thirds of garments are discarded for reasons other than physical durability. Poor fit/design together with lack of perceived value by the owner are responsible for the majority of clothing disposals.

Physical strength is one of the several factors that are important if the lifetime of clothing is to be increased. However, it does not help to make clothes stronger if they are not going to be used longer anyways, this will just contribute to increased environmental impacts from the production and disposal phases. We do not need “disposable products” that last for centuries. To work with reducing the environmental impacts of clothing consumption, it is important to optimize the match between strength, value and fit. Optimizing clothing lifespans will ensure the best possible utilization of the materials in line with the intentions of the circular economy.

References

Chun, H.-K. (1987). Differences between fashion innovators and non-fashion innovators in their clothing disposal practices. (Master’s thesis). Oregon State University, Corvallis. https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/v118rk195

Collett, M., Cluver, B., & Chen, H.-L. (2013). Consumer Perceptions the Limited Lifespan of Fast Fashion Apparel. Research Journal of Textile and Apparel, 17(2), 61-68. doi:10.1108/RJTA-17-02-2013-B009

Domina, T., & Koch, K. (1999). Consumer reuse and recycling of post-consumer textile waste. Journal of Fashion Marketing and Management, 3(4), 346 – 359. doi:10.1108/eb022571

Klepp, I. G. (2001). Hvorfor går klær ut av bruk? Avhending sett i forhold til kvinners klesvaner [Why are clothes no longer used? Clothes disposal in relationship to women’s clothing habits]. Retrieved from Oslo: https://hdl.handle.net/20.500.12199/5390

Koch, K., & Domina, T. (1997). The effects of environmental attitude and fashion opinion leadership on textile recycling in the US. Journal of Consumer Studies & Home Economics, 21(1), 1-17. doi:10.1111/j.1470-6431.1997.tb00265.x

Koch, K., & Domina, T. (1999). Consumer Textile Recycling as a Means of Solid Waste Reduction. Family and Consumer Sciences Research Journal, 28(1), 3-17. doi:10.1177/1077727×99281001

Laitala, K., Boks, C., & Klepp, I. G. (2015). Making Clothing Last: A Design Approach for Reducing the Environmental Impacts. International Journal of Design, 9(2), 93-107.

Laitala, K., & Klepp, I. G. (2020). What Affects Garment Lifespans? International Clothing Practices Based on a Wardrobe Survey in China, Germany, Japan, the UK, and the USA. Sustainability, 12(21), 9151. Retrieved from https://www.mdpi.com/2071-1050/12/21/9151

Lang, C., Armstrong, C. M., & Brannon, L. A. (2013). Drivers of clothing disposal in the US: An exploration of the role of personal attributes and behaviours in frequent disposal. International Journal of Consumer Studies, 37(6), 706-714. doi:10.1111/ijcs.12060

Stevanin, E. (2019). Fast fashion: il continuo rinnovo del guardaroba. Retrieved from https://it.yougov.com/news/2019/05/27/fast-fashion-il-rinnovo-del-guardaroba/

Ungerth, L., & Carlsson, A. (2011). Vad händer sen med våra kläder? Enkätundersökning. Stockholm: http://www.konsumentforeningenstockholm.se/Global/Konsument%20och%20Milj%c3%b6/Rapporter/KfS%20rapport_april11_Vad%20h%c3%a4nder%20sen%20med%20v%c3%a5ra%20kl%c3%a4der.pdf

WRAP. (2017). Valuing Our Clothes: the cost of  UK fashionhttp://www.wrap.org.uk/sites/files/wrap/valuing-our-clothes-the-cost-of-uk-fashion_WRAP.pdf

YouGov. (2017a). Fast fashion: 27% of Malaysians have thrown away clothing after wearing it just once. Retrieved from https://my.yougov.com/en-my/news/2017/12/06/fast-fashion/

YouGov. (2017b). Fast fashion: 39% of Hong Kongers have thrown away clothing after wearing it just once. Retrieved from https://hk.yougov.com/en-hk/news/2017/12/06/fast-fashion/

YouGov. (2017c). Fast fashion: a third of Filipinos have thrown away clothing after wearing it just once. Retrieved from https://ph.yougov.com/en-ph/news/2017/12/06/fast-fashion/

YouGov. (2017d). Fast fashion: a third of Singaporeans have thrown away clothing after wearing it just once. Retrieved from https://sg.yougov.com/en-sg/news/2017/12/06/fast-fashion/

YouGov. (2017e). Fast fashion: Three in ten Aussies have thrown away clothing after wearing it just once. Retrieved from www.au.yougov.com/news/2017/12/06/fast-fashion/

Zhang, L., Wu, T., Liu, S., Jiang, S., Wu, H., & Yang, J. (2020). Consumers’ clothing disposal behaviors in Nanjing, China. Journal of Cleaner Production, 276, 123184.

Product lifetime in European and Norwegian policies

Nina Heidenstrøm, Pål Strandbakken, Vilde Haugrønning and Kirsi Laitala

Abstract

The objective in this report is to better understand how the increased product lifetime option has been positioned in policies over
the past twenty years. By means of policy document analysis, we explore product lifetime positioning in the EU’s circular economy
policies, Norwegian political party programs and official documents, environmental NGO documents, consumer organisation policies
and product policies. Overall, we find little focus on product lifetime between 2000-2015, however, there has been a massive
increase over the past five years. There is still a long way to go in developing appropriate policy instruments to address product
lifetime.

Click here to find the full report (oda.oslomet.no).

Durable or cheap? Parents’ acquisition of children’s clothing

Ingun Grimstad Klepp & Vilde Haugrønning

Abstract

Parents are faced with a plurality of choices and concerns when it comes to the acquisition of clothing for their children. This paper explores how parents employ longevity in consumption of children’s clothing from a practice-oriented perspective. The material consists of 6 focus groups with 40 parents who have at least one child under the age of 18. The aim of the groups was to establish children’s clothing needs: how many they need of each garment, how long parents expect the garment to last and what they understand as quality in clothing.

The analysis shows that parents mainly opt for an ‘one or the other’ strategy; they choose what they understand as quality, often affiliated with specific brands, and accept paying more for the garment, or they mainly choose based on low prices, and expect less of the garment. Quality is evaluated based on the garments’ durability and function. More specifically, the parents measure the service lifetime of a garment based on the number of seasons it lasts, either in terms of wear and tear or the child growing out of it. The expected lifetime is defined by uncertain sources, from their own and friends’ experiences, and their desire to justify their own choices as well as routinised practices.

Our discussion section employs these findings and contextualise them within product lifetime discourses. By doing this, we provide knowledge about how quality is understood, and how brand and price are used as indicators. We show how lack of information about products, especially on garments, leads to uninformed consumption practices that have consequences for how quality and longevity are prioritised and understood.

Consumer practices for extending the social lifetimes of sofas and clothing

Vilde Haugrønning, Kirsi Laitala & Ingun Grimstad Klepp

Abstract

Consumers play an essential role in efforts to extend product lifetimes (PL) and consumers’ practices can determine how long and active lives products get. Applying the framework of Social Practice Theory, this paper argues that in order to suggest changes to how consumers can contribute to longer product lifespans, research needs to focus on consumer practices. The data material consists of 4 focus group interviews with 38 participants about household goods and 29 semi-structured interviews about clothing.

Previous research shows that consumers’ expectations of product lifetime has decreased, while satisfaction with products is relatively high, which may indicate that product break down and/or replacement is more accepted. Therefore, we argue, it is necessary to focus on social lifespans. Our findings show that products such as clothing and sofas often go out of use or are disposed of before their physical lifespan ends, and it is more common to donate or sell old clothing and sofas than buying the products second hand. There are a number of routinised practices, such as disposal of functional items, that are considered normal, which leads to less reflexivity of seemingly unsustainable practices.

The material in products, or the expectation to the material, is highly influential for practices that can extend the social lifespan, such as maintenance. We conclude that by understanding practices as integrated and influenced by elements of the material, social and cultural, policy interventions may have a greater impact on the social lifespan of products.

Global differences in consumer practices affect clothing lifespans

Kirsi Laitala & Ingun Grimstad Klepp

Abstract

Most studies of clothing and related habits are carried out within a country. However, apparel production and sales are a highly globalized industry, with many of the same large chains operating worldwide. It is thus quite possible that the use of the same mass-produced clothing differs between various geographical areas. Based on a practice theoretical approach, we have studied differences in consumption, use and disposal of clothes in different countries that may affect the lifespan of apparel.

The paper is based on an international survey in five countries with large apparel markets: China, Germany, Japan, UK and the USA. 200 respondents from each country answered to a comprehensive web-based survey on their wardrobe content. We found differences in practices that could affect the lifespans of clothing in these five countries. At the same time, we find many similarities. For clothing acquisition, buying new items dominates in all the five markets, and washing machines contribute to the main chore of keeping clothes clean. Home production and second-hand clothes constitute a very small part of clothing consumption in all five countries. Many respondents showed low sewing skills, and repair activities were done irregularly. Thus, many of the challenges to increasing the lifespans of clothing are similar for all the five countries. At the same time, there are significant differences. These differences open up for the possibility to learn «best practice» by studying the countries and transferring knowledge between regions. When defining use phase in LCA and other sustainability tools, it must be taken into account that despite the fact that clothing is a global industry, consumption is part of local practice.

Click here to read the full article (researchgate.com)

What Affects Garment Lifespans? International Clothing Practices Based on a Wardrobe Survey in China, Germany, Japan, the UK, and the USA

Kirsi Laitala and Ingun Grimstad Klepp

Abstract

Increasing the length of clothing lifespans is crucial for reducing the total environmental impacts. This article discusses which factors contribute to the length of garment lifespans by studying how long garments are used, how many times they are worn, and by how many users. The analysis is based on quantitative wardrobe survey data from China, Germany, Japan, the UK, and the USA. Variables were divided into four blocks related respectively to the garment, user, garment use, and clothing practices, and used in two hierarchical multiple regressions and two binary logistic regressions.

The models explain between 11% and 43% of the variation in clothing lifespans. The garment use block was most indicative for the number of wears, while garment related properties contribute most to variation in the number of users. For lifespans measured in years, all four aspects were almost equally important. Some aspects that affect the lifespans of clothing cannot be easily changed (e.g., the consumer’s income, nationality, and age) but they can be used to identify where different measures can have the largest benefits. Several of the other conditions that affect lifespans can be changed (e.g., garment price and attitudes towards fashion) through quality management, marketing strategies, information, and improved consumer policies.

Click here to read the full article (mdpi.com).

Clothing Lifespans: What Should Be Measured and How

Ingun Grimstad Klepp, Kirsi Laitala & Stephen Wiedemann

Abstract

Increasing the use of each product, most often called longer lifespans, is an effective environmental strategy. This article discusses how garment lifespans can be described in order to be measured and compared. It answers two sub-questions: (1) what to measure (units), and (2) how to measure (methods). We introduce and define terms related to clothing lifespans and contribute to discussions about an appropriate functional unit for garments in life cycle assessments (LCA) and other environmental accounting tools. We use a global wardrobe survey to exemplify the units and methods.

Clothing lifespans can be described and measured in years, the number of wears, cleaning cycles, and users. All have an independent value that show different and central aspects of clothing lifespans. A functional unit for LCAs should emphasise both the number of wears for all users as well as the service lifespan in years. Number of wears is the best measure for regular clothing, while number of years is most suited for occasion wear, because it is important to account for the need of more garments to cover all the relevant occasions during a specified time period. It is possible to study lifespan via carefully constructed surveys, providing key data relating to actual garment use.

Click here to read the full article (oda.oslomet.no)