Global differences in consumer practices affect clothing lifespans

Kirsi Laitala & Ingun Grimstad Klepp


Most studies of clothing and related habits are carried out within a country. However, apparel production and sales are a highly globalized industry, with many of the same large chains operating worldwide. It is thus quite possible that the use of the same mass-produced clothing differs between various geographical areas. Based on a practice theoretical approach, we have studied differences in consumption, use and disposal of clothes in different countries that may affect the lifespan of apparel.

The paper is based on an international survey in five countries with large apparel markets: China, Germany, Japan, UK and the USA. 200 respondents from each country answered to a comprehensive web-based survey on their wardrobe content. We found differences in practices that could affect the lifespans of clothing in these five countries. At the same time, we find many similarities. For clothing acquisition, buying new items dominates in all the five markets, and washing machines contribute to the main chore of keeping clothes clean. Home production and second-hand clothes constitute a very small part of clothing consumption in all five countries. Many respondents showed low sewing skills, and repair activities were done irregularly. Thus, many of the challenges to increasing the lifespans of clothing are similar for all the five countries. At the same time, there are significant differences. These differences open up for the possibility to learn «best practice» by studying the countries and transferring knowledge between regions. When defining use phase in LCA and other sustainability tools, it must be taken into account that despite the fact that clothing is a global industry, consumption is part of local practice.

Click here to read the full article (

What Affects Garment Lifespans? International Clothing Practices Based on a Wardrobe Survey in China, Germany, Japan, the UK, and the USA

Kirsi Laitala and Ingun Grimstad Klepp


Increasing the length of clothing lifespans is crucial for reducing the total environmental impacts. This article discusses which factors contribute to the length of garment lifespans by studying how long garments are used, how many times they are worn, and by how many users. The analysis is based on quantitative wardrobe survey data from China, Germany, Japan, the UK, and the USA. Variables were divided into four blocks related respectively to the garment, user, garment use, and clothing practices, and used in two hierarchical multiple regressions and two binary logistic regressions.

The models explain between 11% and 43% of the variation in clothing lifespans. The garment use block was most indicative for the number of wears, while garment related properties contribute most to variation in the number of users. For lifespans measured in years, all four aspects were almost equally important. Some aspects that affect the lifespans of clothing cannot be easily changed (e.g., the consumer’s income, nationality, and age) but they can be used to identify where different measures can have the largest benefits. Several of the other conditions that affect lifespans can be changed (e.g., garment price and attitudes towards fashion) through quality management, marketing strategies, information, and improved consumer policies.

Click here to read the full article (

Use phase of apparel: A Literature review for Life Cycle Assessment with focus on wool.

Kirsi Laitala, Ingun Grimstad Klepp & Beverley Henry


This report presents a literature review of clothing use phase. The purpose is to support improved methodological development for accounting for the use phase in Life Cycle Assessment (LCA) of apparel. All relevant textile fibres are included in the review. However, the main focus is on wool. We ask whether the use of wool has different environmental impacts than clothes in other fibres. The report builds on a review of literature from the past 20 years. The review showed that clothing made from different materials are used, and reused in different ways. Wool is washed differently as it has about ten degrees lower washing temperature than the average laundry in Europe. Wool is also more likely to be either dry-cleaned or washed by hand than other textiles. Moreover, when dried, it is less likely to be tumble-dried.

When comparing the number of days between the washes of different types of clothes, we found that respondents were likely to use their woollen products about twice as long between washes compared to their equivalent cotton products. We also found that woollen products had a longer average lifespan and were more likely to be reused or recycled. There is a lot of research-based information available concerning the use and re-use of clothing, and we believe there are sufficient results available on which to base LCA studies. Furthermore, we believe that environmental tools that compare different fibres but exclude use phase provide misleading results. Including the use phase in fibre ranking benchmark tools will improve the rigour and accuracy of these tools for all fibres, compared to reporting results for fibre production only. However, we have also shown that there are several methodological, conceptual and empirical knowledge gaps in existing literature.

Click here to read the full report (

Sustainable clothing design: use matters

Kirsi Laitala and Casper Boks


Many life cycle assessment studies document that the use period is the most resource-demanding phase during the clothing life cycle. In this paper, we discuss how design can help to reduce the environmental impacts of clothing. Motives behind clothing disposal, acquisition practices and maintenance habits are analysed based on two surveys, qualitative interviews of households, and examination of disposed clothing. The main reasons for clothing disposal were changes in garments, followed by size and fit issues, taste-related unsuitability, situational reasons, functional shortcomings and fashion or style changes. Several design solutions can enable the users to keep and use the clothes longer, and reduce the need for laundering, thus potentially decreasing the total environmental effects of clothing consumption.

Click here to read the full article (